
System Analysis and System Design

System Analysis and System Design are two stages of the software development
life cycle. System Analysis is a process of collecting and analyzing the requirements of the
system whereas System Design is a process of creating a design for the system to meet
the requirements. Both are important stages as it helps to create an effective system with
all the features and functions.

What is System Analysis?
System Analysis is a process of understanding the system requirements and its

environment. It is one of the initial stages of the software development life cycle. System
analysis is the process of breaking the system down into its individual components and
understanding how each component interacts with the other components to accomplish
the system’s overall goal. In this process, the analyst collects the requirements of the
system and documents them.
Characteristics
 It is the study of the existing system to identify the problem areas.
 It is a process of understanding the system requirements and its environment.
 It involves gathering and understanding the user’s requirements.
 It involves analyzing the system in terms of its current and future needs.
Advantages
 It helps to identify the problems and their causes.
 It helps to understand the functional and non-functional requirements of the system.
 It helps to develop better solutions.
 It helps identify the areas of improvement.
Limitations
 It can be time-consuming.
 It can be costly.
 It can be difficult to get accurate information.

What is System Design?
System Design is the process of creating a design for the system to meet the

requirements. System design is the process of designing the architecture, components,
modules, interfaces, and data for a system to satisfy the specified requirements. It
involves the design of the system architecture, components, modules, interfaces, and
data.
Characteristics
 It is the process of creating a design for the system.
 It involves the design of the system architecture, components, modules, interfaces,

and data.
 It involves identifying the modules and components of the system.
 It involves creating the user interface and database design.
Advantages
 It helps to create an efficient system.
 It helps identify the areas of improvement.

 It helps to reduce the development cost.
 It helps to create a better user experience.
Limitations
 It can be time-consuming.
 It can be costly.
 It can be difficult to get accurate information.

Differences between System Analysis and System Design

Factors System Analysis System Design

Purpose

System Analysis is the process of
gathering and analyzing information
to assess the suitability of a current

system and to determine the
requirements of a new system.

System Design is the process
of specifying elements of a
system such as modules,

architecture, components, and
their interfaces.

Approach

System Analysis is a top-down
approach where the analyst looks at
the big picture first and then delves

into the details.

System Design is a bottom-up
approach where the analyst
starts with the details and

moves up to the big picture.

Scope

System Analysis focuses on the needs
of the user, the current system, and

the business processes that the
system must support.

System Design focuses on the
design of the system, its

architecture, and the
components that make up the

system.

Output
System Analysis produces the
requirements document that

describes the desired system.

System Design produces the
design document that

describes the architecture and
components of the system.

Time
System Analysis is a one-time process

that occurs at the beginning of the
project.

System Design is an ongoing
process that occurs

throughout the project.

Methodology

System Analysis relies on a
structured approach such as the

Waterfall Model or the Agile
Methodology.

System Design relies on an
iterative approach such as the

Spiral Model.

Factors System Analysis System Design

Tools
System Analysis utilizes tools such as
interviews, surveys, questionnaires,

and observation.

System Design utilizes tools
such as data flow diagrams

and object-oriented diagrams.

Process
System Analysis is the first step in the

software development process.

System Design is the second
step in the software

development process.

Goals

The goal of System Analysis is to
identify and understand the user
requirements and the business
processes that the system must

support.

The goal of System Design is
to create a design that meets
the user requirements and

supports the business
processes.

Risk
System Analysis involves minimal

risk.

System Design involves
significant risk, as the design

may not meet the user
requirements or support the

business processes.

Problem
Solving

System Analysis focuses on problem
identification and definition.

System Design focuses on
problem-solving and finding

solutions.

Elements of the Requirements Model

Requirements for a computer-based system can be seen in many different ways.
Some software people argue that it’s worth using a number of different modes of
representation while others believe that it’s best to select one mode of representation. The
specific elements of the requirements model are dedicated to the analysis modeling
method that is to be used.

 Scenario-based elements : Using a scenario-based approach, system is described from

user’s point of view. For example, basic use cases and their corresponding use-case
diagrams evolve into more elaborate template-based use cases. Figure 1(a) depicts a
UML activity diagram for eliciting requirements and representing them using use cases.
There are three levels of elaboration.

 Class-based elements : A collection of things that have similar attributes and common
behaviors i.e., objects are categorized into classes. For example, a UML case diagram
can be used to depict a Sensor class for the SafeHome security function. Note that
diagram lists attributes of sensors and operations that can be applied to modify these
attributes. In addition to class diagrams, other analysis modeling elements depict
manner in which classes collaborate with one another and relationships and
interactions between classes.
 Behavioral elements : Effect of behavior of computer-based system can be seen on

design that is chosen and implementation approach that is applied. Modeling
elements that depict behavior must be provided by requirements model.

 Method for representing behavior of a system by depicting its states and events that
cause system to change state is state diagram. A state is an externally observable
mode of behavior. In addition, state diagram indicates actions taken as a
consequence of a particular event. To illustrate use of a state diagram, consider
software embedded within safe Home control panel that is responsible for reading
user input.

 Flow-oriented elements : As it flows through a computer-based system
information is transformed. System accepts input, applies functions to transform it,
and produces output in a various forms. Input may be a control signal transmitted
by a transducer, a series of numbers typed by human operator, a packet of
information transmitted on a network link, or a voluminous data file retrieved from
secondary storage. Transform may compromise a single logical comparison, a
complex numerical algorithm, or a rule-inference approach of an expert system.
Output produce a 200-page report or may light a single LED. In effect, we can create
a flow model for any computer-based system, regardless of size and complexity.

Scenario Testing – Software Testing

Scenario testing helps testers to know how the software will exactly work when end user
will use it. As the scenario testing tests the business process flow of the software so it
helps in figure out a lot of defects which cannot be found with the help of other testing.
Scenario testing is carried out by creating test scenarios which copy the end users usage.
In this article, we’ll learn about it’s characteristics, process, methods and risks.

What is Scenario Testing?

Scenario Testing is a Software Testing Technique that uses scenarios i.e. speculative
stories to help the tester work through a complicated problem or test system. The ideal
scenario test is a reliable, complicated, convincing or motivating story the outcome of
which is easy to assess. It is performed to ensure that the end to end functioning of
software and all the process flow of the software are working properly.
In scenario testing:
1. The testers assume themselves to be the end users and find the real world scenarios

or use cases which can be carried out on the software by the end user.
2. The testers take help from clients, stakeholders and developers to create test

scenarios. A test scenario is a story which describes the usage of the software by an
end user.

Characteristics of Scenario Testing
A scenario test has five key characteristics:
1. Story
Scenario tests are sometimes given as stories or narratives that outline a certain
circumstance or environment in which the application is expected to function.
Stakeholders may more easily relate to the testing method and understand how the
product will function in real-world scenarios when stories are used.
2. Motivating
Scenario tests need to inspire and relate to stakeholders or end users. A compelling
scenario motivates stakeholders to actively participate, which improves teamwork and
results in a greater understanding of user requirements and expectations.
3. Credible

https://www.geeksforgeeks.org/software-testing-basics/

Since stakeholders can see that the scenarios are meaningful and representative of actual
circumstances, credible scenarios boost stakeholder’s trust in the testing process.
4. Complex
Since they include a variety of inputs, conditions and interactions, scenario tests are
intended to be complex. The complicated nature of the scenarios guarantees a deeper
analysis of the software’s capabilities and it’s capacity to manage complex, multiple
circumstances.
5. Easy to evaluate
Even if situations could be complex, they should be designed so that evaluation is simple.
Simple evaluation speeds up decision-making and feedback, enabling effective problem-
solving and identification.

Scenario Testing Process

Methods in Scenario Testing

There are various methods in scenario testing:
1. System scenarios: Scenario tests used in this method are only those sets of realistic,

user activities that cover various components in the system.
2. Use-case and role-based scenarios In the use-case and role-based scenario method

the focus is specifically on how the system is used by a user with different roles and
environment.

3. Recovery Scenarios: Test scenarios for data backup, restoration and recovery are
called recovery scenarios. Additionally, it assesses how the system would function in
the case of a server or component failure.

4. Positive Scenarios: Examining the system in conditions that are common and
expected.

5. Negative Scenarios: Assessing the way the system responds to incorrect or
unexpected inputs and circumstances.

6. Boundary Scenarios: Testing the system at the boundaries of its inputs and outputs
is known as boundary scenario.

7. Error scenarios: These involve generating error scenarios and testing that the
system reacts correctly.

Risks of Scenario Testing
1. Limited Scenario Reporting: Inadequate coverage may result from not identifying or

testing every case that could arise.
2. Little In-depth Analysis of Edge Cases: If edge situations or extreme possibilities are

disregarded, there could be problems when using them in the actual world.
3. High Maintenance Costs: Maintaining a big number of situations can get expensive

and time-consuming.
4. Dependency on Data: Since scenarios could rely heavily on particular data sets,

simulating differences in real life might be difficult.
5. A Lost Feeling of Security: If other crucial testing kinds, like unit or integration

testing, are disregarded, relying just on scenario testing could provide a false sense of
security.

6. Excessive Focus on Positive Situations: Over focusing on favorable possibilities can
cause one to overlook bad or extraordinary scenarios, which are more likely to cause
problems for the system.

7. The complexity of executing a scenario: Complex scenario execution might be
prone to errors, making it challenging to replicate problems or interpret test findings.

Class based modeling in Software Engineering

Class Modeling focuses on static system structure in terms of classes (Class, Data Type,
Interface and Signal items), Associations and on characteristics of Classes (Operations and
Attributes).

Class Modeling focuses on static system structure in terms of classes (Class, Data Type,
Interface and Signal items), Associations and on characteristics of Classes (Operations and
Attributes).
Modeler provides Class Diagrams and Composite Structure Diagrams to support the
definition of the Class Model:

• The Class Diagram is the primary diagram for defining Classes and their Attributes,
Operations and relationships. The Class Diagram notation is based on the Unified Modeling
Language (UML).

• The Composite Structure Diagram defines the structure of Classes, in particular, showing
how Class parts and ports connect with each other. The Composite Structure Diagram
notation is based on the UML 2.0 notation, with the addition of SysML IO Flows.

Flow-oriented modeling in software engineering

What is Flow Oriented Modeling ?
The flow oriented modeling represents how data objects are transformed at they move
through the system. Derived from structured analysis, flow models use the data flow
diagram, a modeling notation that depicts how input is transformed into output as data
objects move through the system. Each software function that transforms data is described
by a process specification or narrative. In addition to data flow, this modeling element also
depicts control flow.

.

Data Flow Diagram :

The data flow diagram represents the flows of data between different process in a business.
It is a graphical technique that depicts information flow and transforms that are applied as
data from input to output. It provides a simple, intuitive method for describing business
processes without focusing on the details of computer systems. DFDs are attractive
techniques because they provide what users do rather than what computers do. In DFD,
there are four symbols are used :

1. Process :
The circle represents the process. An activity that changes or transforms data flows. Since
they transform incoming data to outgoing data, all processes must have inputs and outputs
on a DFD.
2. Data Flow :
The labeled arrows indicate incoming and outgoing data flow. Movement of data between
external entities, processes and data stores is represented with an arrow symbol, which
indicates the direction of flow.
3. Data Store :
The rectangle represents an external entity. A data store does not generate any operations
but simply holds data for later access.
4. External Entity :
In Data Flow Diagrams external entities produce and consume data that flows between the
entity and the system being diagrammed.

Behavioral Model

Overall behavior of a system can be fully understood by Behavioral model. Behavioral
Model is specially designed to make us understand behavior and factors that influence
behavior of a System. Behavior of a system is explained and represented with the help of
a diagram. This diagram is known as State Transition Diagram. It is a collection of states
and events. It usually describes overall states that a system can have and events which
are responsible for a change in state of a system. So, on some occurrence of a particular
event, an action is taken and what action needs to be taken is represented by State
Transition Diagram.

Example : Consider an Elevator. This elevator is for n number of floors and has n number
of buttons one for each floor. Elevator’s working can be explained as follows :
1. Elevator buttons are type of set of buttons which is there on elevator. For reaching a

particular floor you want to visit, “elevator buttons” for that particular floor is
pressed. Pressing, will cause illumination and elevator will start moving towards that
particular floor for which you pressed “elevator buttons”. As soon as elevator reaches
that particular floor, illumination gets canceled.

2. Floor buttons are another type of set of buttons on elevator. If a person is on a
particular floor and he wants to go on another floor, then elevator button for that
floor is pressed. Then, process will be same as given above. Pressing, will cause
illumination and elevator to start moving, and when it reaches on desired floor,
illumination gets canceled.

3. When there is no request for elevator, it remains closed on current floor.State
Transition Diagram for an elevator system is shown below –Advantages :

 Behavior and working of a system can easily be understood without any effort.
 Results are more accurate by using this model.
 This model requires less cost for development as cost of resources can be minimal.
 It focuses on behavior of a system rather than theories.
Disadvantages :
 This model does not have any theory, so trainee is not able to fully understand basic

principle and major concept of modeling.
 This modeling cannot be fully automated.
 Sometimes, it’s not easy to understand overall result.
 Does not achieve maximum productivity due to some technical issues or any errors.

Software Design process

Software Design is the process of transforming user requirements into a suitable form,
which helps the programmer in software coding and implementation. During the software
design phase, the design document is produced, based on the customer requirements as
documented in the SRS document. Hence, this phase aims to transform the SRS document
into a design document.

The following items are designed and documented during the design phase:
 Different modules are required.
 Control relationships among modules.
 Interface among different modules.
 Data structure among the different modules.
 Algorithms are required to be implemented among the individual modules.

Objectives of Software Design:
1. Correctness:

A good design should be correct i.e., it should correctly implement all the functionalities
of the system.

2. Efficiency:
A good software design should address the resources, time, and cost optimization
issues.

3. Flexibility:
A good software design should have the ability to adapt and accommodate changes
easily. It includes designing the software in a way, that allows for modifications,

https://www.geeksforgeeks.org/software-engineering-software-design-process/

enhancements, and scalability without requiring significant rework or causing major
disruptions to the existing functionality.

4. Understandability:
A good design should be easily understandable, it should be modular, and all the
modules are arranged in layers.

5. Completeness:
The design should have all the components like data structures, modules, and external
interfaces, etc.

6. Maintainability:
A good software design aims to create a system that is easy to understand, modify, and
maintain over time. This involves using modular and well-structured design principles
e.g.,(employing appropriate naming conventions and providing clear documentation).
Maintainability in software Design also enables developers to fix bugs, enhance
features, and adapt the software to changing requirements without excessive effort or
introducing new issues.

Software Design Concepts:
Concepts are defined as a principal idea or invention that comes into our mind or in
thought to understand something. The software design concept simply means the idea or
principle behind the design. It describes how you plan to solve the problem of designing
software, the logic, or thinking behind how you will design software. It allows the software
engineer to create the model of the system or software or product that is to be developed
or built. The software design concept provides a supporting and essential structure or
model for developing the right software.

Software Design process

Points should be considered while Designing Software:
1. Abstraction- (Hide Irrelevant data)

Abstraction simply means to hide the details to reduce complexity and increases
efficiency or quality. Different levels of Abstraction are necessary and must be applied
at each stage of the design process so that any error that is present can be removed to
increase the efficiency of the software solution and to refine the software solution. The
solution should be described in broad ways that cover a wide range of different things
at a higher level of abstraction and a more detailed description of a solution of software
should be given at the lower level of abstraction.

2. Modularity- (subdivide the system)
Modularity simply means dividing the system or project into smaller parts to reduce the
complexity of the system or project. In the same way, modularity in design means
subdividing a system into smaller parts so that these parts can be created
independently and then use these parts in different systems to perform different
functions. It is necessary to divide the software into components known as modules
because nowadays, there are different software available like Monolithic software that
is hard to grasp for software engineers. So, modularity in design has now become a

trend and is also important. If the system contains fewer components then it would
mean the system is complex which requires a lot of effort (cost) but if we are able to
divide the system into components then the cost would be small.

3. Architecture- (design a structure of something)
Architecture simply means a technique to design a structure of something. Architecture
in designing software is a concept that focuses on various elements and the data of the
structure. These components interact with each other and use the data of the structure
in architecture.

4. Refinement- (removes impurities)
Refinement simply means to refine something to remove any impurities if present and
increase the quality. The refinement concept of software design is actually a process of
developing or presenting the software or system in a detailed manner that means to
elaborate a system or software. Refinement is very necessary to find out any error if
present and then to reduce it.

5. Pattern- (a Repeated form)
The pattern simply means a repeated form or design in which the same shape is
repeated several times to form a pattern. The pattern in the design process means the
repetition of a solution to a common recurring problem within a certain context.

6. Information Hiding – Hide the Information
Information hiding simply means to hide the information so that it cannot be accessed
by an unwanted party. In software design, information hiding is achieved by designing
the modules in a manner that the information gathered or contained in one module is
hidden and can’t be accessed by any other modules.

7. Refactoring-(Reconstruct something)
Refactoring simply means reconstructing something in such a way that it does not affect
the behavior of any other features. Refactoring in software design means reconstructing
the design to reduce complexity and simplify it without impacting the behavior or its
functions. Fowler has defined refactoring as “the process of changing a software system
in a way that it won’t impact the behavior of the design and improves the internal
structure”.

Different levels of Software Design:
There are three different levels of software design. They are:
1. Architectural Design:

The architecture of a system can be viewed as the overall structure of the system & the
way in which structure provides conceptual integrity of the system. The architectural
design identifies the software as a system with many components interacting with each
other. At this level, the designers get the idea of the proposed solution domain.

2. Preliminary or high-level design:
Here the problem is decomposed into a set of modules, the control relationship among
various modules identified, and also the interfaces among various modules are
identified. The outcome of this stage is called the program architecture. Design
representation techniques used in this stage are structure chart and UML.

3. Detailed design:
Once the high-level design is complete, a detailed design is undertaken. In detailed
design, each module is examined carefully to design the data structure and algorithms.
The stage outcome is documented in the form of a module specification document.

Data Design Elements

Following are the types of design elements:

1. Data design elements

 The data design element produced a model of data that represent a high level of
abstraction.

 This model is then more refined into more implementation specific representation which
is processed by the computer based system.

 The structure of data is the most important part of the software design.
2. Architectural design elements

 The architecture design elements provides us overall view of the system.
 The architectural design element is generally represented as a set of interconnected

subsystem that are derived from analysis packages in the requirement model.
The architecture model is derived from following sources:

 The information about the application domain to built the software.
 Requirement model elements like data flow diagram or analysis classes, relationship and

collaboration between them.
 The architectural style and pattern as per availability.

3. Interface design elements
 The interface design elements for software represents the information flow within it and

out of the system.
 They communicate between the components defined as part of architecture.

Following are the important elements of the interface design:
1. The user interface
2. The external interface to the other systems, networks etc.

3. The internal interface between various components.

4. Component level diagram elements

 The component level design for software is similar to the set of detailed specification of
each room in a house.

 The component level design for the software completely describes the internal details of
the each software component.

 The processing of data structure occurs in a component and an interface which allows all
the component operations.

 In a context of object-oriented software engineering, a component shown in a UML
diagram.

 The UML diagram is used to represent the processing logic.

5. Deployment level design elements

 The deployment level design element shows the software functionality and subsystem
that allocated in the physical computing environment which support the software.

 Following figure shows three computing environment as shown. These are the personal
computer, the CPI server and the Control panel.

	System Analysis and System Design
	What is System Analysis?
	What is System Design?
	Differences between System Analysis and System Design

	Elements of the Requirements Model
	Scenario Testing – Software Testing
	What is Scenario Testing?
	Characteristics of Scenario Testing
	1. Story
	2. Motivating
	3. Credible
	4. Complex
	5. Easy to evaluate

	Scenario Testing Process Methods in Scenario Testing
	Risks of Scenario Testing

	Flow-oriented modeling in software engineering
	What is Flow Oriented Modeling ?
	Data Flow Diagram :
	1. Process :
	2. Data Flow :
	3. Data Store :

	Behavioral Model
	Software Design process
	Objectives of Software Design:
	Software Design Concepts:
	Points should be considered while Designing Software:
	Different levels of Software Design:

